Abstract
Multilevel regression and poststratification (MRP) is a model-based approach for estimating a population parameter of interest, generally from large-scale surveys. It has been shown to be effective in highly selected samples, which is particularly relevant to investigators of large-scale population health and epidemiologic surveys facing increasing difficulties in recruiting representative samples of participants. We aimed to further examine the accuracy and precision of MRP in a context where census data provided reasonable proxies for true population quantities of interest. We considered 2 outcomes from the baseline wave of the Ten to Men study (Australia, 2013-2014) and obtained relevant population data from the 2011 Australian Census. MRP was found to achieve generally superior performance relative to conventional survey weighting methods for the population as a whole and for population subsets of varying sizes. MRP resulted in less variability among estimates across population subsets relative to sample weighting, and there was some evidence of small gains in precision when using MRP, particularly for smaller population subsets. These findings offer further support for MRP as a promising analytical approach for addressing participation bias in the estimation of population descriptive quantities from large-scale health surveys and cohort studies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.