Abstract

Distributed energy resource (DER) including wind power, solar energy and energy storage system (ESS) are connected to the active distribution network (ADN) in various combination ways, which makes the distribution network have interaction. As a bridge connecting the transmission grid (TG) and micro grid (MG), ADN breaks the traditional operation pattern of TG + ADN + MG. Considering the physical connections and shared information among TG, ADN and MG, this paper proposes a decentralized and parallel analytical target cascading (ATC) algorithm for interactive unit commitment (UC) implementation in regional power systems. To explore the synergistic ability of the TG + ADN + MG coping with uncertainties of DER, i.e., wind power, the primary and secondary frequency regulation of TG are implemented to cope with uncertainties. Furthermore, the distributional uncertainty of wind power is well modeled by data driven, which is proposed in our previous work (Zhang et al., 2019) [1]. Both the startup/shutdown variables of the thermal units and the variables in TG + ADN + MG are integrated into the multi-level interactive UC model to optimize simultaneously, thus realizing the optimal goal of the whole network, resources complementary and optimal allocation of power system. An improved 6-bus system is used to test the proposed model, the numerical results show that the proposed decentralized algorithm is a fully parallelized procedure. And it also demonstrates the parallel implementation significantly enhances computations efficiency of the ATC algorithm.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.