Abstract

This chapter describes an assessment methodology for various sustainability indicators of technical systems, such as reliability, availability, fault tolerance, and reliability associated cost of technical safety-critical systems, based on Multi-Level Hierarchical Reliability Model (MLHRM). As an application case of the proposed methodology, the various sustainability indicators of electric vehicle propulsion systems are considered and evaluated on the different levels of the hierarchical model. Taking into account that vehicle traction drive systems are safety-critical systems, the strict requirements on reliability indices are imposed to each of their components. The practical application of the proposed technique for reliability oriented development of electric propulsion system for the search-and-rescue helicopter and icebreaker LNG tanker and the results of computation are presented. The opportunities of improvement regarding reliability and fault tolerance of such technical systems are investigated. The results of the study, allowing creating highly reliable technical systems for the specified operating conditions and choosing the most appropriate system design, are discussed in detail.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call