Abstract

Development of the electric propulsion systems for future electric aircrafts is one of the most important challenges in aviation science. Moving away from fossil fuels and transition to clean hydrogen energy involves the use of electric machines to produce thrust in future aircraft. However, such a transition also requires new electrical equipment that can operate at cryogenic temperatures of liquid hydrogen, which will be used as fuel for future aircraft. The article describes an approach to the development of a Hydrogen Electric Propulsion System (HEPS) for future aircrafts, which is being carried out at the Moscow Aviation Institute. This system is based on superconducting electrical machines, cryoelectronic and a hydrogen cooling system. The main difficulties on the way of creating HEPS are described. The schemes of the developed superconducting electrical machines with high specific power are presented. A diagram of one of the variants of the electric propulsion system for future aircraft based on superconducting components is illustrated. The features of HEPS simulation and its cooling system modelling are described. Some results of Hydrogen Electric Propulsion System components development are discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.