Abstract
The study was conducted to compare the individual growth curves models and to detect individual differences in the growth rate by a performing multilevel analysis. The data set used for this purpose consisted of live weight records of 52 crossbred lambs from birth to 182 days of age. There were 670 observations in level-1 units which were the repeated measurements over time, and there were 52 observations in level-2 units which were lambs. In the study, parameter estimation of timeindependent covariate factors, such as gender, birth type and birth weight, was performed by using five different models within the framework of multilevel modeling. LRT, AIC and BIC were used for the selection of the best model. The “Conditional Quadratic Growth Model-B” provided the best fit to the data set. The multilevel analysis indicated that linear and quadratic growth in lambs was significant. According to the results of the study, individual growth curves can be investigated using multilevel modeling in animal studies which is an important parameter of the individual growth rate.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.