Abstract
An N-stage optimal control problem formulated in very general terms is transformed into a nonlinear programming problem by constraining the closed-loop strategies to take on the structure of multi-layer feed-forward neural networks. A nonlinear programming problem results from substitution of the neural strategies in the process cost, which becomes a function of the synaptic weights and of the initial state. The dependence on the initial state is removed by averaging the cost function with respect to the initial state, which is assumed to be a stochastic vector uniformly distributed on a given region. The gradient method is then applied to optimize the synaptic weights by using the stochastic approximation concept. Recursive equations to compute the gradient components in a distributed way are presented, which generalize the adjoint system equations. Simulation results for nonlinear non-quadratic problems show that the method performs efficiently.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.