Abstract

Real-time image recognition is required in many important practical problems. Interaction with users in online mode requires flexibility and adaptability from applications. The Group Method of Data Handling (GMDH) allows changing the model structure and adjusting the system architecture to the characteristics of each task under consideration. Moreover, the approximating properties of neo-fuzzy neurons used as elements of the system provide the high recognition accuracy under conditions of short data samples. This paper proposes a multilayer GMDH-neuro-fuzzy network based on extended neo-fuzzy neurons. The learning algorithm has filtering and tracking properties, guarantees the required speed important for real-time applications. The effectiveness of the proposed system is confirmed for the human emotions recognition.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.