Abstract

Variable rate application (VRA) is a crucial tool in precision agriculture, utilizing platforms such as Google Earth Engine (GEE) to access vast satellite image datasets and employ machine learning (ML) techniques for data processing. This research investigates the feasibility of implementing supervised ML models (random forest (RF), the support vector machine (SVM), gradient boosting trees (GBT), classification and regression trees (CART)) and unsupervised k-means clustering in GEE to generate accurate management zones (MZs). By leveraging Sentinel-2 satellite imagery and yielding monitor data, these models calculate vegetation indices to monitor crop health and reveal hidden patterns. The achieved classification accuracy values (0.67 to 0.99) highlight the potential of GEE and ML models for creating precise MZs, enabling subsequent VRA implementation. This leads to enhanced farm profitability, improved natural resource efficiency, and reduced environmental impact.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call