Abstract

Electrochemical CO2 reduction reaction (CO2 RR) is an effective approach to address CO2 emission, promote recycling, and synthesize high-value multi-carbon (C2+ ) chemicals for storing renewable electricity in the long-term. The construction of multilayer-bound nanoreactors to achieve management of intermediate CO is a promising strategy for tandem to C2+ products. In this study, a series of Ag@Cu2 O nanoreactors consisting of an Ag-yolk and a multilayer confined Cu shell is designed to profile electrocatalytic CO2 RR reactions. The optimized Ag@Cu2 O-2nanoreactor exhibits a 74% Faradaic efficiency during the C2+ pathway and remains stable for over 10h at a bias current density of 100mAcm-2 . Using the finite element method, this model determines that the certain volume of cavity in the Ag@Cu2 O nanoreactors facilitates on-site CO retention and that multilayers of Cu species favor CO capture. Density functional theory calculations illustrate that the biased generation of ethanol products may arise from the (100)/(111) interface of the Cu layer. In-depth explorations in multilayer-bound nanoreactors provide structural and interfacial guidance for sequential coupling of CO2 RR intermediates for efficient C2+ generation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call