Abstract
A compact multilayer non-commensurate C-section dispersive delay structure (DDS) is proposed for analog signal processing (ASP) applications. In contrast to a previously reported C-section DDS, which was uniplanar and used edge-coupled C-sections, this DDS is based on broadside-coupled C-sections, and hence achieves a much larger ratio of group delay swing to frequency bandwidth, leading to higher ASP resolution. Moreover, it is much more compact, while maintaining acceptable insertion loss. After a parametric characterization of a mono-block commensurate multilayer DDS, with varied strip widths, two multiblock non-commensurate DDSs with linear group delay slopes are demonstrated by full-wave simulation and experimental low-temperature co-fired ceramics results. The proposed DDS exhibits a significant footprint reduction factor of around 7 compared to its uniplanar edge-coupled counterpart.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.