Abstract
In this paper, a novel amperometric glucose biosensor was constructed by alternative self-assembly of positively charged poly(diallydimethylammonium chloride) (PDDA) and negatively charged glucose oxidase (GOx) onto a 3D Nafion network via electrostatic adsorption. The amount of Nafion in the electrode and the number of the (PDDA/GOx)n multilayers were optimized to develop a sensitive and selective glucose biosensor. Under optimal conditions, the glucose biosensor with (PDDA/GOx)5 multilayers exhibited remarkable electrocatalytic activity, capable of detecting glucose with enhanced sensitivity of 9.55μA/mMcm2 and a commendably low detection limit of 20μM (S/N=3). A linear response range of 0.05–7mM (a linear correlation coefficient of 0.9984, n=20) was achieved. In addition, the glucose biosensor demonstrated superior selectivity towards glucose over some interferents, such as ascorbic acid (AA) and uric acid (UA), at an optimized detection potential of 0.6V versus Ag/AgCl reference.
Paper version not known (
Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have