Abstract

AbstractIn this study, old corrugated container recycled fibers were treated with polyelectrolyte multilayers consisting of biopolymer cationic starch with two degrees of substitution (DS) each in combination with one anionic starch. Pulp zeta potential, paper strength and the thin layer ellipsometry technique were applied to examine the influence of cationic starch DS on the formation of polyelectrolyte multilayers. The results indicated a significant interaction between the DS of cationic starch and the number of ionic starch layers formed. When low‐DS cationic starch was used, the pulp zeta potential and the paper strength increased significantly in assembling the first cationic layer. However, in depositing high‐DS cationic starch a greater zeta potential and a stronger influence on the paper strength were observed with a larger number of starch layers. This was confirmed by thin layer ellipsometry when a greater thickness of multilayers was achieved by employing high‐DS cationic starch to form a higher number of layers. © 2017 Society of Chemical Industry

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.