Abstract

In multilabel learning, each instance in the training set is associated with a set of labels and the task is to output a label set whose size is unknown a priori for each unseen instance. In this paper, this problem is addressed in the way that a neural network algorithm named BP-MLL, i.e., Backpropagation for Multilabel Learning, is proposed. It is derived from the popular Backpropogation algorithm through employing a novel error function capturing the characteristics of multilabel learning, i.e., the labels belonging to an instance should be ranked higher than those not belonging to that instance. Applications to two real-world multilabel learning problems, i.e., functional genomics and text categorization, show that the performance of BP-MLL is superior to that of some well-established multilabel learning algorithms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.