Abstract
Multi-label classification methods are increasingly required by modern applications, such as protein function classification, music categorization, and semantic scene classification. This article introduces the task of multi-label classification, organizes the sparse related literature into a structured presentation and performs comparative experimental results of certain multi-label classification methods. It also contributes the definition of concepts for the quantification of the multi-label nature of a data set.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have