Abstract
To adequately represent the nonlinearities in the high-dimensional feature space for hyperspectral images (HSIs), we propose a multiple kernel collaborative representation-based classifier (CRC) in this paper. Extended morphological profiles are first extracted from the original HSIs, because they can efficiently capture the spatial and spectral information. In the proposed method, a novel multiple kernel learning (MKL) model is embedded into CRC. Multiple kernel patterns, e.g., Naive, Multimetric, and Multiscale are adopted for the optimal set of basic kernels, which are helpful to capture the useful information from different pixel distributions, kernel metric spaces, and kernel scales. To learn an optimal linear combination of the predefined basic kernels, we add an extra training stage to the typical CRC where kernel weights are jointly learned with the representation coefficients from the training samples by minimizing the representation error. Moreover, by considering different contributions of dictionary atoms, the adaptive representation strategy is applied to the MKL framework via a dissimilarity-weighted regularizer to obtain a more robust representation of test pixels in the fused kernel space. Experimental results on three real HSIs confirm that the proposed classifiers outperform the other state-of-the-art representation-based classifiers.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have