Abstract
We calculate nuclear matrix elements (NME) of neutrinoless double beta decay in four different candidate nuclei (Ge-76, Se-82, Mo-100, Te-130) within the quasiparticle random phase approximation (QRPA) and its uncertainties. We assume (up to) four coexisting mechanisms for neutrinoless double beta decay, mediated by light Majorana neutrino exchange, heavy Majorana neutrino exchange, R-parity breaking supersymmetry, and squark-neutrino, interfering either constructively or destructively with each other. We find that, unfortunately, current NME uncertainties appear to prevent a robust determination of the relative contribution of each mechanism to the decay amplitude, even assuming accurate measurements of decay lifetimes. The near-degeneracy of the decay mechanisms is analyzed with simple algebraic techniques, which do not involve assumptions about the statistical distribution of errors. We discuss implications of such degeneracy on prospective searches for absolute neutrino masses.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.