Abstract
Rhizosphere is a soil volume of high spatio-temporal heterogeneity and intensive plant-soil-microbial interactions, for which visualization and process quantification is of highest scientific and applied relevance, but still very challenging. A novel methodology for quick assessment of two-dimensional distribution of available phosphorus (P) in rhizosphere was suggested, tested, and development up to the application platform. Available P was firstly trapped by an in-situ diffusive gradients in thin-films (DGT) sampler with precipitated zirconia as the binding gel, and subsequently, the loaded gel was analyzed with an optimized colorimetric imaging densitometry (CID). The imaging platform was established linking: i) DGT, ii) planar optode, and iii) soil zymography techniques to simultaneously determine available P, oxygen, and acid phosphatase in rhizosphere at sub-millimeter spatial scales. The DGT identified available P level in rice rhizosphere were spatially overlapping to the localized redox hotspots and phosphatase activity. The spatial relationship between available P and acid phosphatase activity was dependent on root development. The root radial oxygen loss (ROL) remained active during the experimental observations (2–3 days), while a flux of available P of 10 pg cm−2 s−1 was visualized within 2–3 mm of roots, confirming the correlative response of rice roots to oxygen secretion and P uptake. Summarizing, the established imaging platform is suitable to capture spatial heterogeneity and temporal dynamics of root activities, nutrient bioavailability, ROL and enzyme activities in rhizosphere.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.