Abstract

Cadmium (Cd) activation, especially at a high spatial resolution, in paddy soils with a high geogenic Cd background is yet to be understood. To investigate the temporal and spatial patterns of Cd activation in rice rhizosphere, pot and rhizotron experiments were conducted using four paddy soils with high geogenic Cd (0.11–3.70 mg kg−1) from Guangxi, southwestern China. The pot experiment results showed that porewater Cd concentrations initially decreased and then increased over the complete rice growth period, reaching its lowest value during the late-tillering and early-filling stages. Besides, correlation analysis identified organic matter and root manganese (Mn) content as the main factors affecting rice Cd uptake, with Mn having a negative effect and organic matter having a positive effect. Sub-millimeter two-dimensional chemical imaging revealed that the distribution of labile Cd in the rhizosphere (by diffusive gradients in thin-films, or DGT) was influenced by the root system and soil properties, such as pH (by planar optode) and acid phosphatase activity (by soil zymography). Soil acid phosphatase activity increased under Cd stress. The overall pH at rice rhizosphere decreased. Moreover, a close relationship was found between the spatial distributions of soil labile Mn and Cd at the rhizosphere, with higher Mn being associated with lower Cd lability. This study highlights Mn as a key element in regulating rice Cd uptake and enlightens future Mn-based strategies for addressing Cd pollution in rice paddy soils, especially in karst areas with high geochemical background.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.