Abstract

A novel multigrid method for the solution of the steady Reynolds-averaged Navier–Stokes equations is presented, that gives convergence speeds similar to laminar flow multigrid solvers. The method is applied to Menter’s one-equation turbulence model. New aspects of the method are the combination of nonlinear Gauss–Seidel smoothing on the finest grid with linear coarse-grid corrections, and local damping in the initial stages of the computation, to keep the solution stable; the damping needed is estimated with the nonlinear smoother. Efficiency on the finest grid is increased with full multigrid, second-order accuracy is obtained with defect correction. Tests on boundary layers and airfoil flows show the efficiency of the method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call