Abstract

In this research, we investigate the numerical solution of second member problems that depend on the solution obtained through a multigrid method. Specifically, we focus on the application of multigrid techniques for solving nonlinear variational inequalities. The main objective is to establish the uniform convergence of the multigrid algorithm. To achieve this, we employ elementary subdifferential calculus and draw insights from the convergence theory of nonlinear multigrid methods.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.