Abstract

We discuss the problem of solving large linear systems of equations that arise in lattice systems with disorder. Three examples of this kind of problem are (i) computing currents in a random-resistor network, (ii) computing the fermion (quark) propagator in lattice quantum chromodynamics, and (iii) the discrete Schr\odinger operator with a random potential (the Anderson model of localization). We show that the algebraic multigrid is a very effective way to compute currents in a random-resistor network. It is likely that similar techniques will apply to the other problems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.