Abstract

Based on the flexible molecular engineering technique of reversible addition-fragmentation chain transfer (RAFT) polymerization, various polymers carrying positive or negative charges and different terminal groups such as pyrene or tertiary amine were synthesized for fabricating multifunctional solid-state electrochemiluminescent (ECL) sensors. Accordingly, the chemosensors immobilizing the ECL probe or co-immobilizing the ECL probe and the coreactant were realized for the quantification of small molecules (e.g., tripropylamine, tetracycline), and an aptasensor was developed for the specific and sensitive lysozyme assay (limit of detection: 0.1 ng/mL). All of the sensors were realized via a simple design exploiting the π−π stacking and electrostatic interactions. It was confirmed that the proposed strategy is simple but universal for the fabrication of versatile ECL sensors that showed simplicity, cost-effectiveness, high sensitivity, long-term stability, and excellent reproducibility.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.