Abstract

A highly sensitive method is described for determination ofDNA. It is based on dual signal amplification, viz. (a)DNA-templated metal deposition, and (b) thermally initiated surface-initiated reversible addition-fragmentation chain transfer (SI-RAFT) polymerization. A peptide nucleic acid (PNA) with a terminal thiol group was grasped onto a gold electrode by self-assembly. The modified electrode serves as a probe to selectively capture target DNA (tDNA). In the next step, Zr(IV) ions are bound to the phosphate groups of the tDNA. A chain-transfer agent (CTA) for thermally initiated SI-RAFT polymerization, 4-cyano-4-(phenylcarbonothioylthio)pentanoic acid (CPAD), was immobilized on tDNA by conjugation of the carboxy group to Zr(IV) ions. Subsequently, numerous monomers of glycosyloxyethyl methacrylate (GEMA) were connected to the CPAD by thermally initiated SI-RAFT polymerization with azobisisobutyronitrile (AIBN) serving as the free-radical thermal initiator. Afterwards, hydroxyl groups of the GEMA were oxidized to aldehyde groups reacting with sodium periodate, and silver nanoparticles were further introduced on the surface of electrode via "silver mirror reaction". This results in a large electrochemical signal amplification. Under optimized conditions, the electrochemical signal (best measured at a working potential of 0V vs. SCE (KCl; 3M)) increases linearly with the logarithm of tDNA concentration in the 10 to 106 aM concentration range. The detection limit is as low as 5.6 aM (~34 molecules in a 10μL sample). This is lower by factors between 2 and 1800 times than detection limits of most other ultra-sensitive electrochemical DNA assays. Graphical abstractSchematic representation of a dual signal amplification strategy combining thermally initiated surface-initiated reversible addition-fragmentation chain transfer polymerization (SI-RAFT) and DNA-templated silver nanoparticles for electrochemical determination of DNA.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call