Abstract

AbstractMultidrug resistance (MDR) is the main obstruction against the chemotherapy for hepatocellular carcinoma. Herein, a biodegradable multifunctional tumor‐targeted core–shell structural nanocarrier (RGD peptide functionalized nanoparticles, RGD‐NPs) is reported for treating MDR hepatocellular carcinoma, which consists of three components: pH‐triggered calcium phosphate shell, long circulation phosphatidylserine‐polyethylene glycol (PS‐PEG) core, and an active targeting ligand RGD peptide. Drug‐resistance inhibitor (verapamil, VER) and chemotherapeutic agent (mitoxantrone, MIT) are separately encapsulated into the outer shell layer and inner core layer to obtain VER and MIT loaded RGD‐NPs (VM‐RGD‐NPs). Due to the shell–core structure, the VER and MIT can release sequentially, thus synergistically weakening the efflux effect to MIT by MDR cells. Also, the calcium phosphate can trigger lysosomal escaping through the varied pH value. Together with the optimized internalization pathway in MDR tumor cells, the increased intracellular effective chemotherapeutic drug concentration can be realized, thus achieving the improved curative effect. In this system, the PEG extends the circulation time in vivo. Also, the peptide RGD distinctly increases the affinity to MDR tumors with respect to nontargeted nanoparticles. As a consequence, VM‐RGD‐NPs exhibit a significant synergistic effect toward the MDR hepatocellular carcinoma, providing a promising therapeutic approach for MDR tumor.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.