Abstract
This study involves the design, development and evaluation of a new multifunctional prosthetic mesh for treatment of abdominal wall defects without complications. The developed prosthetic mesh is a hybrid platform of both synthetic and natural materials with its backbone consisting of a synthetic commercial polyester fabric (CPF) to provide the required mechanical integrity. The CPF mesh was coated by a natural biodegradable, biocompatible and antimicrobial layer of chitosan (CS) incorporating phenytoin (PH)-loaded pluronic nanomicelles for healing promotion, and ciprofloxacin (CPX)-alginate polyelectrolyte complex-based microparticles as antibacterial agent. The prosthetic mesh was optimized and evaluated in-vitro and in-vivo. The optimum PH-loaded micelles had particle size of 95.42 nm, polydispersity index of 0.41, zeta potential of -18 and entrapment efficiency of 89.4%, while the optimum CPX microcomplexes had particle size of 1292.0 nm, polydispersity index of 0.8, zeta potential of -20.1, complexation efficiency of 81.1%, and minimum inhibitory concentration of 0.25 μg/ml and 0.125 μg/ml against Staphylococcus aureus and Pseudomonas aeruginosa, respectively. In-vivo study on abdominal wall defect dog model was conducted, followed by implantation of the proposed prosthetic meshes. The developed mesh depicted an efficient healing with excellent biocompatibility, and could be an ideal and feasible alternative prosthesis with many advantages such as low cost, inertness, mechanical stability, pliability, low infection rate, limited modification by body tissues, sterilizability, non-carcinogenicity, limited inflammatory reaction, hypoallergenic as well as minimal complications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.