Abstract
As a common type of pollutants in industrial wastewater, cationic dyes have attracted great attentions. Using biodegradable N,N-di (carboxymethyl) glutamic acid (GLDA) as ligand and corn stalk (CS) as matrix, a novel and green biomass modified material GLDA-CS was successfully prepared. The multifunctional property of GLDA-CS for removing methylene blue (MB), malachite green (MG) and alkaline red 46 (R-46) from wastewater was evaluated. The dyes were removed by the electrostatic adsorption based on the cationic adsorption properties of GLDA-CS. The removal rates of MB, MG and R-46 can quickly reach 90.4%, 96.8% and 94.8% in short time. especially for MG and R-46 even only 20 min. The adsorption capacities of the dyes still remain more than 86.5% of the initial values after 5 cycles. In a heterogeneous system, the dyes were removed by Fenton-like degradation based on the metal chelating property of GLDA-CS. 100% degradation rates of the dyes can be achieved in 35 min under the acidic region. Even if at pH 7, degradation rates are 44.1%, 47.1% and 56.6% higher than those under the conventional homogeneous system, and the degradation rate remained at 83.7% after 5 cycles. Regardless of the adsorption or degradation, GLDA-CS shows strong anti-anion interference ability. The potential mechanisms of adsorption and degradation for the dyes by GLDA-CS were deduced by quantization calculation. It is concluded that the adsorption removal of the dyes by GLDA-CS follows MG > R-46 > MB, and mainly depends on the electrostatic interaction between -COOH in GLDA-CS and -N- in the dye molecules. Based on the degradation mechanism of Fenton-like reaction, the possible active sites of the dyes attacked by free radicals and their possible degradation intermediates were predicted by the calculations of Fukui function.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have