Abstract

Zeolite-metal organic framework nanocomposite catalyst is developed for the synthesis of 2-((5-(hydroxymethyl)furan-2-yl)methylene)malononitrile from sucrose/fructose/glucose via one-pot cascade protocol. To accomplish this objective, zeolite Beta and Zr based metal- organic frameworks such as UiO-66 and UiO-66-NH2 are investigated for the independent steps, i.e. the conversion of sucrose to HMF and the Knoevenagel condensation of HMF and malononitrile. Beta zeolite exhibits the best activity in the sucrose to HMF conversion, whereas UiO-66-NH2 exhibits the best activity in the Knoevenagel condensation. Therefore, zeolite Beta and UiO-66-NH2 are integrated to develop a highly sustainable and efficient multi-functional catalyst for the conversion of sucrose to 2-((5-(hydroxymethyl)furan-2-yl)methylene)malononitrile via one-pot cascade reaction. The composite catalyst contains the optimum acidity and basicity for the cascade reaction. The presence of both the frameworks in the composite material is confirmed by using various physico-chemical characterization techniques. Further, the integration of both the active frameworks enhances the chemical stability and recyclability of the composite catalyst in the cascade reaction. This study demonstrates a unique approach to develop a synthesis strategy for the integration of inorganic zeolite and MOFs to achieve the desired activity, selectivity, and stability of the developed catalyst.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.