Abstract

To explore new alternatives to combat increasing risk of bacterial infection, in this work, a cationic antimicrobial peptide (HHC10) and glutathione (GSH) co-ligand protected ultra-small gold nanoclusters (Au NCs) was constructed by a simple one-pot method. The intrinsic luminescent property of GSH-protected Au NCs (AuxGSH) endowed enhanced aggregation-induced emissions (AIEs) of co-ligand-protected Au NCs (AuxGSH-HHC10), which exhibited a very strong orange luminescence. Based on the AIE effect, for one thing, AuxGSH could be applied to rapidly and selectively detect Gram-positive bacteria. For another, AuxGSH-HHC10 exhibited potential for multicolor imaging of both Gram-negative and Gram-positive bacteria. Besides, as-synthesized AuxGSH-HHC10 could act as potent nanoantibiotics against both Gram-negative and Gram-positive bacteria, which could not only avoid drug tolerance but also be effective toward drug-resistance bacteria. The antibacterial mechanism indicated that the synergetic effect of the generation of reactive oxygen species (ROS), binding with DNA, and broad-spectrum antibacterial activity of HHC10 led to the membrane damage, depolarization, and interference of biological function, thus enhancing the antibacterial effect. More importantly, such an Au NCs could realize excellent therapeutic outcomes for wound healing in vivo, and showed good biocompatibility and biosafety toward health tissues. The results will provide a great potential for the application of Au NCs for imaging-guided antibacterial platform.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call