Abstract
Synthetically replicating key biological processes requires the ability to puncture lipid bilayer membranes and to remodel their shape. Recently developed artificial DNA nanopores are one possible synthetic route due to their ease of fabrication. However, an unresolved fundamental question is how DNA nanopores bind to and dynamically interact with lipid bilayers. Here we use single-molecule fluorescence microscopy to establish that DNA nanopores carrying cholesterol anchors insert via a two-step mechanism into membranes. Nanopores are furthermore shown to locally cluster and remodel membranes into nanoscale protrusions. Most strikingly, the DNA pores can function as cytoskeletal components by stabilizing autonomously formed lipid nanotubes. The combination of membrane puncturing and remodeling activity can be attributed to the DNA pores’ tunable transition between two orientations to either span or co-align with the lipid bilayer. This insight is expected to catalyze the development of future functional nanodevices relevant in synthetic biology and nanobiotechnology.
Highlights
Replicating key biological processes requires the ability to puncture lipid bilayer membranes and to remodel their shape
Synthetic biology has considerable interest to rationally engineer the complex functions of membrane proteins for biotechnological applications
We combine single-molecule localization microscopy (SMLM) with polymer-supported membranes (PSMs) assembled on a high-density polyethylene glycol (PEG) polymer cushion that separates the membrane from the underlying glass surface[30, 31]
Summary
Replicating key biological processes requires the ability to puncture lipid bilayer membranes and to remodel their shape. The molecules remained largely mobile even 2 h after binding to the membrane (Supplementary Fig. 4 and Supplementary Movie 3), corroborating that immobile AF647NP-3C DNA NPs reflect membrane-spanning DNA NPs. A more nuanced picture was obtained when comparing the diffusion coefficient D for the mobile fraction of AF647NP-1C and AF647NP-3C, which was derived from single-particle trajectories using MSD and step length histogram analyses.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.