Abstract

Carbon aerogel has gained intense attention as one of the most promising microwave absorption materials. It can overcome severe electromagnetic pollution, thanks to its 3D macroscopic structure and superb conductive loss capacity. However, there is still a big challenge to endow multifunctionality to carbon aerogel while maintaining its good electromagnetic wave absorption (EWA) so as to adapt wide practical application. Herein, a novel carbon-based aerogel consisting of Cu and TiO2 nanoparticles dispersed on carbon nanofiber framework was derived from carbonized bacterial cellulose (CBC) decorated with its mother bacteria via freeze-drying, in situ growth and carbonization strategies. The synthesized carbon-based CBC/Cu/TiO2 aerogel achieved an excellent EWA performance with a broad effective absorption bandwidth (EAB) of 8.32 GHz. It is attributed to the synergistic loss mechanism from multiple scattering, conductive network loss, interfacial polarization loss and dipolar polarization relaxation. Meanwhile, the obtained aerogel also shows an excellent thermal insulation with a 3-mm-thick sample generating a temperature gradient of over 42 °C at 85 °C and a maximum radar cross-section (RCS) reduction of 23.88 dB m2 owing to the cellular structure and synergistic effects of multi-components. Therefore, this study proposes a feasible design approach for creating lightweight, effective, and multifunctional CBC-based EWA materials, which offer a new platform to develop ultrabroad electromagnetic wave absorber under the guidance of RCS simulation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.