Abstract

In this paper, a broadband multi-layered active metamaterial design is investigated, which can achieve a high polarization conversion efficiency over a wide band of frequencies in the terahertz regime. The design can be switched to an efficient metamaterial absorber using the phase transition property of vanadium dioxide (V O 2). Additionally, the designed structure can convert the linear polarization of the incoming wavefronts to its cross-polarization and linear polarization to circular polarization in the reflection mode. The broadband characteristic is achieved due to the strong anisotropic behavior of the metasurface. The structure is robust to a wide range of incident angles as well. The proposed switchable multifunctional design can contribute to the development of active plasmonic polarization devices and metamaterial absorbers.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call