Abstract

While the standard scenario of third-harmonic generation (THG) by a dispersive-wave pump involves the emission of light with a frequency 3omega, thrice the frequency omega of the input pump field, solitons undergoing a continuous shift of their central frequency omega due to the Raman effect in a multimode optical fiber can generate the third harmonic in a different fashion. In the experiments reported here, we provide the first direct experimental evidence of THG by a continuously red-shifting soliton pump by studying the third-harmonic buildup in relation to the spectral evolution of the soliton pump field in a silica photonic-crystal fiber (PCF). We show that solitons excited in a PCF by unamplified femtosecond pulses of a Cr:forsterite laser sweep through the spectral range from 1.25 to 1.63 microm , scanning through a manifold of THG phase-matching resonances with 3omega dispersive waves in PCF modes. As a result, intense third-harmonic peaks build up in the range of wavelengths from 370 to 550 nm at the output of the fiber, making PCF a convenient fiber-format multifrequency source of short-wavelength radiation. Time-resolved fluorescence measurements with photoexcitation provided by the third-harmonic PCF output are presented, demonstrating the high potential of PCF sources for an ultrafast photoexcitation of fluorescent molecular systems in physics, chemistry, and biology.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call