Abstract
Results are presented from a new approach to modeling the subgrid-scale stresses in large-eddy simulation of turbulent flows, based on explicit evaluation of the subgrid velocity components from a multifractal representation of the subgrid vorticity field. The approach is motivated by prior studies showing that the enstrophy field exhibits multifractal scale-similarity on inertial-range scales in high Reynolds number turbulence. A scale-invariant multiplicative cascade thus gives the spatial distribution of subgrid vorticity magnitudes within each resolved-scale cell, and an additive cascade gives the progressively isotropic decorrelation of subgrid vorticity orientations from the resolved scale Δ to the viscous scale λν. The subgrid velocities are then obtained from Biot–Savart integrals over this subgrid vorticity field. The resulting subgrid velocity components become simple algebraic expressions in terms of resolved-scale quantities, which then allow explicit evaluation of the subgrid stresses τij*. This new multifractal subgrid-scale model is shown in a priori tests to give good agreement for the filtered subgrid velocities, the subgrid stress components, and the subgrid energy production at both low (ReΔ≈160) and high (ReΔ≈2550) resolved-scale Reynolds numbers. Implementing the model is no more computationally burdensome than traditional eddy-viscosity models. Moreover, evaluation of the subgrid stresses requires no explicit differentiation of the resolved velocity field and is therefore comparatively unaffected by discretization errors.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.