Abstract

Himalayan seismicity is related to continuing northward convergence of Indian plate against Eurasian plate. Earthquakes in this region are mainly caused due to release of elastic strain energy. The Himalayan region can be attributed to highly complex geodynamic process and therefore is best suited for multifractal seismicity analysis. Fractal analysis of earthquakes (mb ≥ 3.5) occurred during 1973–2008 led to the detection of a clustering pattern in the narrow time span. This clustering was identified in three windows of 50 events each having low spatial correlation fractal dimension (D C ) value 0.836, 0.946 and 0.285 which were mainly during the span of 1998 to 2005. This clustering may be considered as an indication of a highly stressed region. The Guttenberg Richter b-value was determined for the same subsets considered for the D C estimation. Based on the fractal clustering pattern of events, we conclude that the clustered events are indicative of a highly stressed region of weak zone from where the rupture propagation eventually may nucleate as a strong earthquake. Multifractal analysis gave some understanding of the heterogeneity of fractal structure of the seismicity and existence of complex interconnected structure of the Himalayan thrust systems. The present analysis indicates an impending strong earthquake, which might help in better hazard mitigation for the Kumaun Himalaya and its surrounding region.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.