Abstract
For nonconformal repellers satisfying a certain cone condition, we establish a version of multifractal analysis for the topological entropy of the level sets of the Lyapunov exponents. Due to the nonconformality, the Lyapunov exponents are averages of nonadditive sequences of potentials, and thus one cannot use Birkhoff’s ergodic theorem nor the classical thermodynamic formalism. We use instead a nonadditive topological pressure to characterize the topological entropy of each level set. This prevents us from estimating the complexity of the level sets using the classical Gibbs measures, which are often one of the main ingredients of multifractal analysis. Instead, we avoid even equilibrium measures, and thus in particular g-measures, by constructing explicitly ergodic measures, although not necessarily invariant, which play the corresponding role in our work.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have