Abstract

ABSTRACT Clinical relevance That myopic defocus, even if restricted to the peripheral retina, inhibits eye growth in young monkey eyes has motivated the therapy of myopia control through multifocal contact lens wear in children. Background To understand how eye-length regulating mechanisms are triggered by light requires knowledge of retinal light spread. That is largely lacking for the multifocal contact lenses used in the therapy because empirical methods identifying just the defocus in dioptres are inadequate. Methods “Through-focus” diffraction computations in contact lens/eye models with typical normal eye parameters, including polychromatic light, the chromatic aberrations and an M-cone phototransduction layer, offer estimates of retinal image spread for a range of viewing distances. Results Point- and edge-spread distributions of activation of phototransduction in the central retina show that the addition of multifocal zones produces some veiling for in-focus viewing and substantial improvement of image quality for near targets in the unaccommodated eye. These effects are much reduced in the retinal periphery. Conclusion Whatever therapeutic value there is in prescribing multifocal contact lenses for myopia control, it is not particularly dependent on the precise configuration of the multifocal zones, nor can it be ascribed to changes in image quality specific to the retinal periphery; its origin is more likely less blur for near targets, reducing the stimulus to accommodation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call