Abstract

Exposing the retina to a simultaneous myopic defocus is an optical method that has shown a promising effect in slowing the progression of myopia. Optical treatments applying a simultaneous defocus are available in the form of soft contact lenses or multifocal lenses originally designed to correct presbyopia. Orthokeratology is another optical method that slows down the progression of myopia. With orthokeratology, it is hypothesized that a change in peripheral refraction could slow the progression of myopia. We aimed to measure the accommodation response between monofocal and multifocal contact lenses in young subjects. Additionally, we performed a ray-tracing simulation to visualize the quality of the retinal image and the refractive status in the retinal periphery. The accommodation and pupil size measurements were performed on 29 participants aged 24.03 ± 2.73 years with a refractive error (spherical equivalent) of −1.78 ± 1.06 D. With the multifocal lens in situ, our participants showed less accommodation in comparison to the monofocal contact lens (mean difference, 0.576 ± 0.36 D, p > 0.001) when focusing on a near target at 40 cm. Pupil size became smaller in both contact lens groups during an accommodation of 0.29 ± 0.69 mm, p ≤ 0.001 and 0.39 ± 0.46 mm, p ≤ 0.001 for monofocal and multifocal contact lenses, respectively. The ray-tracing model showed a degradation for central and peripheral vision with the multifocal contact lens. The peripheral refraction was relatively myopic in both contact lens conditions up to 30°. Even if the accommodation ability is without fault, parts of simultaneous myopic defocus are used for the near task. The peripheral refraction in the ray-tracing model was not different between the two contact lenses. This is contrary to the proposed hypothesis that myopic peripheral refraction slows down the progression of myopia in current optical methods.

Highlights

  • The rising prevalence of myopia in children [1–3] is of great concern

  • Exposing the retina to a simultaneous myopic defocus is an optical method that has shown a promising effect in slowing the progression of myopia

  • Pupil size became smaller in both contact lens groups during an accommodation of 0.29 ± 0.69 mm, p ≤ 0.001 and 0.39 ± 0.46 mm, p ≤ 0.001 for monofocal and multifocal contact lenses, respectively

Read more

Summary

Introduction

The rising prevalence of myopia in children [1–3] is of great concern. Methods to control and slow the progression of myopia have been developed or are presently under development. Atropine eyedrops are a pharmaceutical therapy that shows promising effects depending on the concentration [4–7]. The effects of atropine are dose-dependent, and low-dose atropine is not efficient in slowing the elongation of the eyes’ axial length [8]. With a higher concentration of atropine, the slowing effect increases, but so does the effect of atropine on the ciliary muscle and the sphincter muscle, which causes blurred near vision and photophobia [9]. One way to reduce the progression of myopia seems to be through natural means, such as via frequent exposure to bright natural sunlight while playing outdoors, for example [10].

Objectives
Methods
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.