Abstract

Two-dimensional (2D) multiferroic materials have attracted great interest owing to the integration of ferroelastic and ferromagnetic properties. We identify a novel 2D multiferroic vanadium dioxide (VO₂) monolayer exhibiting a monoclinic phase with a C2/m space group using density functional theory (DFT) calculations. The energetic, dynamic, thermodynamic and mechanical analyses indicate that the monolayer exhibits excellent stability and can be prepared experimentally. The arrangement of the electronic energy bands is analogous to that of a type I heterostructure. The electron doping at a concentration of 0.2 electrons per V atom results in a significant increase in the Curie temperature (TC) from 11.2 to 184 K estimated by Monte Carlo simulations, a transition from semiconductor to half-metallicity. In addition, the VO₂ monolayer exhibits 120° ferroelastic switching with a moderate switching energy barrier of 32 meV per atom, subsequently allowing 120° rotation of the easy magnetization axis. Our work reveals the intrinsic multiferroicity of VO₂, which may provide a guidance on the design of next-generation mechanical/spintronic devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.