Abstract
The perception of video is different from that of image because of the motion information in video. Motion objects lead to the difference between two neighboring frames which is usually focused on. By far, most papers have contributed to image saliency but seldom to video saliency. Based on scene understanding, a new video saliency detection model with multi-features is proposed in this paper. First, background is extracted based on binary tree searching, then main features in the foreground is analyzed using a multi-scale perception model. The perception model integrates faces as a high level feature, as a supplement to other low-level features such as color, intensity and orientation. Motion saliency map is calculated using the statistic of the motion vector field. Finally, multi-feature conspicuities are merged with different weights. Compared with the gaze map from subjective experiments, the output of the multi-feature based video saliency detection model is close to gaze map.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have