Abstract
Target detection algorithms can greatly improve the efficiency of tomato leaf disease detection and play an important technical role in intelligent tomato cultivation. However, there are some challenges in the detection process, such as the diversity of complex backgrounds and the loss of leaf symmetry due to leaf shadowing, and existing disease detection methods have some disadvantages in terms of deteriorating generalization ability and insufficient accuracy. Aiming at the above issues, a target detection model for tomato leaf disease based on deep learning with a global attention mechanism, TDGA, is proposed in this paper. The main idea of TDGA includes three aspects. Firstly, TDGA adds a global attention mechanism (GAM) after up-sampling and down-sampling, as well as in the SPPF module, to improve the feature extraction ability of the target object, effectively reducing the interference of invalid targets. Secondly, TDGA uses a switchable atrous convolution (SAConv) in the C3 module to improve the model’s ability to detect. Thirdly, TDGA adopts the efficient IoU loss (EIoU) instead of complete IoU loss (CIoU) to solve the ambiguous definition of aspect ratio and sample imbalance. In addition, the influences of different environmental factors such as single leaf, multiple leaves, and shadows on the performance of tomato disease detection are extensively experimented with and analyzed in this paper, which also verified the robustness of TDGA. The experimental results show that the average accuracy of TDGA reaches 91.40%, which is 2.93% higher than that of the original YOLOv5 network, which is higher than YOLOv5, YOLOv7, YOLOHC, YOLOv8, SSD, Faster R-CNN, RetinaNet and other target detection networks, so that TDGA can be utilized for the detection of tomato leaf disease more efficiently and accurately, even in complex environments.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.