Abstract

In this work, multifactor optimization of fused deposition modeling (FDM) process parameters has been reported for in-house prepared feedstock filament comprising of SiC/Al2O3 reinforced in recycled low-density polyethylene (LDPE) matrix with different particle sizes (i.e. single particle size (SPS), double particle size (DPS), and triple particle size (TPS) in different proportions). This study has been conducted on Al2O3-based DPS reinforcement in LDPE, which came out as a better solution during pilot experimentation in comparison to SPS, TPS, and SiC reinforcement, for printing of functional prototypes as rapid tooling (RT). The result of study suggests that infill angle in the FDM process is the most significant process parameter (contributing around 93%) for preparation of RT as regards dimensional accuracy and hardness is concerned. The RT so prepared is thermally stable as evident from differential scanning calorimetry analysis. Further, the photomicrographs observed in different planes suggest that, at the proposed settings, RT has a uniform distribution of reinforcement in LDPE matrix and can be gainfully used in light machining applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call