Abstract

Maladaptive hybridization, as determined by the pattern and intensity of selection against hybrid individuals, is an important factor contributing to the evolution of prezygotic reproductive isolation. To identify the consequences of hybridization between Drosophila pseudoobscura and D. persimilis, we estimated multiple fitness components for F1 hybrids and backcross progeny and used these to compare the relative fitness of parental species and their hybrids across two generations. We document many sources of intrinsic (developmental) and extrinsic (ecological) selection that dramatically increase the fitness costs of hybridization beyond the well-documented F1 male sterility in this model system. Our results indicate that the cost of hybridization accrues over multiple generations and reinforcement in this system is driven by selection against hybridization above and beyond the cost of hybrid male sterility; we estimate a fitness loss of >95% relative to the parental species across two generations of hybridization. Our findings demonstrate the importance of estimating hybridization costs using multiple fitness measures from multiple generations in an ecologically relevant context; so doing can reveal intense postzygotic selection against hybridization and thus, an enhanced role for reinforcement in the evolution of populations and diversification of species.

Highlights

  • Predicting the evolutionary fate of incipient, new or even established species challenged with sympatry requires knowledge of the fitness consequences of hybridization

  • Such species complexes are well-suited for studies of species formation, the maintenance of species boundaries and in particular, of reinforcement - the process by which natural selection against hybrids strengthens prezygotic reproductive isolation [1,2,3,4,5]

  • The cost of hybridization is rarely estimated using multiple fitness components or from multiple generations of hybrid and backcross progeny [7,25,32,33,36]. Challenging, making such measurements is important as some costs of hybridization may be subtle, environmentally dependent, or manifest only in backcross progeny - yet the evolutionary fates of sympatric species are determined in large part by the relative fitness of offspring from intra- and interspecific matings [26]

Read more

Summary

Introduction

Predicting the evolutionary fate of incipient, new or even established species challenged with sympatry requires knowledge of the fitness consequences of hybridization. Complexes of potentially hybridizing species offer the opportunity to identify the ecological processes and proximate mechanisms that underlie natural and sexual selection acting on hybrids and backcross progeny. Such species complexes are well-suited for studies of species formation, the maintenance of species boundaries and in particular, of reinforcement - the process by which natural selection against hybrids strengthens prezygotic reproductive isolation [1,2,3,4,5].

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call