Abstract

Like other species of Drosophila, Drosophila pseudoobscura has a distinct bias toward the usage of C- and G-ending codons. Previous studies have indicated that this bias is due, at least in part, to natural selection. Codon bias clearly differs among amino acids (and other codon classes) in Drosophila, which may reflect differences in the intensity of selection on codon usage. Ongoing natural selection on synonymous codon usage should be reflected in the shapes of the site frequency spectra of derived states at polymorphic positions. Specifically, regardless of other demographic effects on the spectrum, it should be shifted toward higher values for changes from less-preferred to more-preferred codons, and toward lower values for the converse. If the intensity of natural selection is increased, shifts in the site frequency spectra should be more pronounced. A total of 33,729 synonymous polymorphic sites on Chromosome 2 in D. pseudoobscura were analyzed. Shifts in the site frequency spectra are consistent with differential intensity of natural selection on codon usage, with stronger shifts associated with higher codon bias. The shifts, in general, are greater for polymorphic synonymous sites than for polymorphic intron sites, also consistent with natural selection. However, unlike observations in D. melanogaster, codon bias is not reduced in areas of low recombination in D. pseudoobscura; the site frequency spectrum signal for selection on codon usage remains strong in these regions. However, diversity is reduced, as expected. It is possible that estimates of low recombination reflect a recent change in recombination rate.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call