Abstract

Vaccines are regarded as the most cost-effective countermeasure against infectious diseases. One challenge often affecting vaccine development is antigenic diversity or pathogen heterogeneity. Different strains produce immunologically heterogeneous virulence factors, therefore an effective vaccine needs to induce broad-spectrum host immunity to provide cross-protection. Recent advances in genomics and proteomics, particularly computational biology and structural biology, establishes structural vaccinology and highlights the feasibility of developing effective and precision vaccines. Here, we introduce the epitope- and structure-based vaccinology platform multiepitope-fusion-antigen (MEFA), and provide instructions to generate polyvalent MEFA immunogens for vaccine development. Conceptually, MEFA combines epitope vaccinology and structural vaccinology to enable a protein immunogen to present heterogeneous antigenic domains (epitopes) and to induce broadly protective immunity against different virulence factors, strains or diseases. Methodologically, the MEFA platform first identifies a safe, structurally stable and strongly immunogenic backbone protein and immunodominant (ideally neutralizing or protective) epitopes from heterogeneous strains or virulence factors of interest. Then, assisted with protein modeling and molecule dynamic simulation, MEFA integrates heterogeneous epitopes into a backbone protein via epitope substitution for a polyvalentMEFA protein and mimics epitope native antigenicity. Finally, the MEFA protein is examined for broad immunogenicity in animal immunization, and assessed for potential application for multivalent vaccine development in preclinical studies.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call