Abstract
Simple SummaryOptimizing the gut microbial community and morphometrical traits has become an increasingly prominent area of research due to recent evidence that suggests gut health and functionality affects the production performance of broilers. Creating a diverse microbial population can increase the nutrient digestibility of feed, as the microbes can break down a large portion of macromolecules and convert them into bioavailable substrates to be utilized by the host. A diverse microbiome can be promoted by a variety of additives, including feed enzymes. This study investigated the impact of the application of super-dosing multienzymes on gut morphology, microbial profile, nutrient digestibility, and bone mineralization in broiler chickens. Results found that super-dosing multienzymes improved nutrient digestibility, maintained a diverse microbial population, and tended to increase the overall villi morphology. Bone mineralization was not affected by increasing multienzyme doses. Additionally, the present study found three bacteria that were unique to multienzyme inclusion at a super-dose level.Optimizing gut health has a large impact on nutrient digestibility and bioavailability, and super-dosing feed enzymes may be one solution to achieve this. A 42-day grow-out trial was conducted using 192 Ross 308 broilers to determine if super-dosing Natuzyme at 0 g/t, 350 g/t, 700 g/t, and 1000 g/t dose rates could improve the gut morphology, alter the cecal microbial profile, enhance bone mineralization, and improve nutrient digestibility of a wheat–corn–soybean diet (six replicates per treatment, eight birds per pen). One bird per pen was slaughtered at day 42 and gut morphology, cecal microbial profile, and nutrient digestibility were studied. The addition of enzymes tended to increase the villus height in the duodenum, villus height, width, and crypt depth in the jejunum, and villus width and the number of goblet cells in the ileum. Microbial profiling revealed diverse communities; however, they did not significantly differ between treatment groups. Yet, 700 g/t Natuzyme promoted microbes belonging to the genus Romboutsia and Ruminococcus gauvreauii, while 1000 g/t Natuzyme promoted Barnesiella species. The nutrient digestibility demonstrated a significant improvement in all enzyme doses compared to the control. In conclusion, based on the outcomes of this study, a dose rate of 700 g/t Natuzyme is recommended to improve gut morphology and nutrient digestibility, and promote unique microbes which aid in feed efficiency.
Highlights
The gastrointestinal tract is composed of an intricate ecosystem of microbiota which plays a fundamental role in nutrient digestion and absorption
Ahmed et al [20], Mazhari et al [21], and Shakouri et al [22] were in agreement, as they found that the inclusion of multienzymes significantly increased villus height and crypt depth, these were not super-dosed
This study aimed to ascertain whether super-dosing multienzymes would improve gut morphology, change the cecal microbial profile, and improve nutrient digestibility in broiler chickens
Summary
The gastrointestinal tract is composed of an intricate ecosystem of microbiota which plays a fundamental role in nutrient digestion and absorption. The gut microbial profile has a significant impact on overall poultry health, immune response, and growth performance. The gastrointestinal tract is the interface between the outside world and the internal body, making it a defensive barrier against harmful pathogens and foreign bodies. Promoting good gut health is fundamental to maintaining a high-performing flock, as healthy birds can devote the majority of their energy uptake to production rather than combating disease. Good gut health results in improved feed conversion ratio, increased weight gain, decreased mortality, and an increased performance index, it is imperative for farmers to promote and maintain good gut health in their flock [3]
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.