Abstract

The vanadium-based amorphous electrode material can realize the valence state conversion and increase its specific capacity through the multi-electron reaction. We have obtained V2O5–Li3PO4 glass with a strong reducing agent CaC2, realizing a multi-electron reaction of V5+ to V4+ and then to V3+ in the model system. Moreover, we have explored the relationship between valence state, crystallinity, and conductivity limit to compare the cycle performances of amorphous glass batteries. The CaC2 content of 20%, V4+ presented the dominating valence state with a content of 77.5%. VP-C20% exhibited a maximum specific capacity of 319.3 mAh g−1, and the specific capacity after 100 cycles was 280.3 mAh g−1, corresponding to a retention capacity of 87.8%. The electrochemical performance of amorphous vanadium oxide decreased with the increase of the LiV2O5’s nanocrystallinity. Crystallinity and the controllable multi-electron reaction could provide an important reference for designing other new electrode materials with high capacity and long cycle life.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.