Abstract

ObjectiveThe goal of the current study was to gain insight into the prevalence and concentrations of antimicrobial resistant (AMR) Escherichia coli in Dutch surface water, and to explore the role of wastewater as AMR contamination source.MethodsThe prevalence of AMR E. coli was determined in 113 surface water samples obtained from 30 different water bodies, and in 33 wastewater samples obtained at five health care institutions (HCIs), seven municipal wastewater treatment plants (mWWTPs), and an airport WWTP. Overall, 846 surface water and 313 wastewater E. coli isolates were analysed with respect to susceptibility to eight antimicrobials (representing seven different classes): ampicillin, cefotaxime, tetracycline, ciprofloxacin, streptomycin, sulfamethoxazole, trimethoprim, and chloramphenicol.ResultsAmong surface water isolates, 26% were resistant to at least one class of antimicrobials, and 11% were multidrug-resistant (MDR). In wastewater, the proportions of AMR/MDR E. coli were 76%/62% at HCIs, 69%/19% at the airport WWTP, and 37%/27% and 31%/20% in mWWTP influents and effluents, respectively. Median concentrations of MDR E. coli were 2.2×102, 4.0×104, 1.8×107, and 4.1×107 cfu/l in surface water, WWTP effluents, WWTP influents and HCI wastewater, respectively. The different resistance types occurred with similar frequencies among E. coli from surface water and E. coli from municipal wastewater. By contrast, among E. coli from HCI wastewater, resistance to cefotaxime and resistance to ciprofloxacin were significantly overrepresented compared to E. coli from municipal wastewater and surface water. Most cefotaxime-resistant E. coliisolates produced ESBL. In two of the mWWTP, ESBL-producing variants were detected that were identical with respect to phylogenetic group, sequence type, AMR-profile, and ESBL-genotype to variants from HCI wastewater discharged onto the same sewer and sampled on the same day (A1/ST23/CTX-M-1, B23/ST131/CTX-M-15, D2/ST405/CTX-M-15).ConclusionIn conclusion, our data show that MDR E. coli are omnipresent in Dutch surface water, and indicate that municipal wastewater significantly contributes to this occurrence.

Highlights

  • The use of antimicrobials in human and animal health care has resulted in the widespread prevalence of antimicrobial resistant (AMR) bacteria in humans and animals, and in the environment, e.g. in surface water and soil [1,2,3,4]

  • Among E. coli from health care institutions (HCIs) wastewater, resistance to cefotaxime and resistance to ciprofloxacin were significantly overrepresented compared to E. coli from municipal wastewater and surface water

  • Our data indicate that municipal wastewater, amongst others containing wastewater from the community and from HCIs, significantly contributes to the presence of antimicrobial-resistant E. coli in surface water

Read more

Summary

Introduction

The use of antimicrobials in human and animal health care has resulted in the widespread prevalence of antimicrobial resistant (AMR) bacteria in humans and animals, and in the environment, e.g. in surface water and soil [1,2,3,4]. The probability of getting exposed to AMR bacteria outside a health care setting has increased. The direct risk entails exposure to AMR pathogens, resulting in hard to treat infections. The public health risks associated with asymptomatic carriage comprise transfer of resistance genes between commensals and pathogens, transfer of AMR commensals (that are often opportunistic pathogens) to people who are more vulnerable to infection (e.g. the elderly, immunocompromised individuals and individuals with underlying disease), or asymptomatic carriers entering a stage of increased vulnerability themselves (e.g. hospitalization)

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.