Abstract

Transfer learning is a topic that has attracted attention for the intelligent fault diagnosis of bearings since it addresses bearing datasets that have different distributions. However, the traditional intelligent fault diagnosis methods based on transfer learning have the following two shortcomings. (1) The multi-mode structure characteristics of bearing datasets are neglected. (2) Some local regions of the bearing signals may not be suitable for transfer due to signal fluctuation. Therefore, a multi-domain weighted adversarial transfer network is proposed for the cross-domain intelligent fault diagnosis of bearings. In the proposed method, multi-domain adversarial and attention weighting modules are designed to consider bearing multi-mode structure characteristics and solve the influence of local non-transferability regions of signals, respectively. Two diagnosis cases are used to verify the proposed method. The results show that the proposed method is able to extract domain invariant features for different cross-domain diagnosis cases, and thus improves the accuracy of fault identification.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call