Abstract

Multi-document summarization deals with finding the core theme presented in multiple documents. This can be done by selecting the important information from the text in the multiple documents. Extractive summarization selects and extracts such sentences which represent the gist of the documents. In this paper, we have surveyed how research in multi-document summarization has evolved from simple sentence-based techniques like sentence position to complex neural network based supervised learning techniques. In recent years, more and more supervised learning methods are proposed to tackle this problem along with some unsupervised approaches described in LSA (Deerwester et al. J Am Soc Inf Sci 41(6): 391–407, 1990) and TextRank (Mihalcea et al. Textrank: Bringing order into text. In: Proceedings of the 2004 conference on empirical methods in natural language processing, 2004). In this chapter, we have proposed an alternative unsupervised method where the problem of multi-document summarization can be viewed as a non-linear combinatorial optimization problem. We have formulated the problem and discussed possible solution to this problem.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.