Abstract

In this paper, an aerodynamic and wing structure is investigated by low-fidelity methods. Bell-shaped lift distribution was rediscovered in the last decade as a perspective alternative to traditional wing design. This leads to lower aerodynamic drag than elliptical lift distribution for a given lift force and root bending moment. Root bending moment is used as a surrogate model of wing structure weight. It is relatively raw simplification introduced by Prandtl to estimate the weight of the spar as a main part of the wing structure. For a more accurate wing weight estimation, the main parts of the wing are dimensioned under CS-23 regulation in this work. The design procedure starts with defining the elementary parameters of the wing shape (chord/twist distribution, wingspan). After geometry generating a non-linear lifting line is used to calculate aerodynamic characteristics for all regime, determined from the flight envelope. The dimensions of a spar, ribs and skin are calculated in the next step of the procedure for given bending moment, load and torque moment distribution. The structure of the wing is assumed as a two-spar, manufactured by aluminum. A target of design is to find out the shape of the wing for given weight. The solution is verified by CFD calculation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.